Grothendieck’s Theorem, past and Present
نویسنده
چکیده
Probably the most famous of Grothendieck’s contributions to Banach space theory is the result that he himself described as “the fundamental theorem in the metric theory of tensor products”. That is now commonly referred to as “Grothendieck’s theorem” (“GT” for short), or sometimes as “Grothendieck’s inequality”. This had a major impact first in Banach space theory (roughly after 1968), then, later on, in C∗-algebra theory (roughly after 1978). More recently, in this millennium, a new version of GT has been successfully developed in the framework of “operator spaces” or non-commutative Banach spaces. In addition, GT independently surfaced in several quite unrelated fields: in connection with Bell’s inequality in quantum mechanics, in graph theory where the Grothendieck constant of a graph has been introduced and in computer science where the Grothendieck inequality is invoked to replace certain NP hard problems by others that can be treated by “semidefinite programming” and hence solved in polynomial time. This expository paper (where many proofs are included), presents a review of all these topics, starting from the original GT. We concentrate on the more recent developments and merely outline those of the first Banach space period since detailed accounts of that are already available, for instance the author’s 1986 CBMS notes.
منابع مشابه
Grothendieck ’ s Theorem , past and present UNCUT updated and still expanding
Probably the most famous of Grothendieck’s contributions to Banach space theory is the result that he himself described as “the fundamental theorem in the metric theory of tensor products”. That is now commonly referred to as “Grothendieck’s theorem” (GT in short), or sometimes as “Grothendieck’s inequality”. This had a major impact first in Banach space theory (roughly after 1968), then, later...
متن کاملOh-type and Oh-cotype of Operator Spaces
The definition and basic properties of OH-type and OH-cotype of operator spaces are given. We present operator space versions of Maurey’s extension theorem and generalized little Grothendieck’s theorem in terms of these new notions. We also observe that “OH-cotype 2” in this paper is equivalent to the previous definition of “OH-cotype 2” of G. Pisier.
متن کاملRepresentation of categories
One of the earliest theorems in category theory stated that an abelian category could be represented faithfully by exact functors into the category Ab of abelian groups [Freyd, 1964], [Lubkin, 1961] and [Heron, unpublished]. Then Mitchell [1965] showed that every such category had a full exact embedding into a module category. An equivalent formulation is that every abelian category into a cate...
متن کاملOn a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p
It is known that the Grauert-Riemenschneider vanishing theorem is not valid in characteristic p ([1]). Here we show that it may be restored in the presence of a suitable Frobenius splitting. The proof uses interchanging two projective limits, one involving iterated Frobenius maps, cf. [2] and [4], the other coming from Grothendieck’s theorem on formal functions. That leads to the following gene...
متن کاملREMARKS ON LIPSCHITZ p-SUMMING OPERATORS
In this note, a nonlinear version of the Extrapolation Theorem is proved and as a corollary, a nonlinear version of the Grothendieck’s Theorem is presented. Finally, we prove that if T : X → H is Lipschitz with X being a pointed metric space and T (0) = 0 such that T∣H∗ is q-summing (1 ≤ q <∞), then T is Lipschitz 1-summing.
متن کامل